Pharmacological Review on *Terminalia Chebula*

SuryaPrakash DV, Sree Satya N, Sumanjali Avanigadda and Meena Vangalapati*

Centre of Biotechnology, Department of Chemical Engineering, AUCE (A), Andhra University, Visakhapatnam, India.

ABSTRACT

Herbal drug product has a special place in the world of pharmaceuticals. *Terminalia chebula* is a deciduous tree, used in traditional medicines. It is reported to contain various biochemical compounds such as tannins, chebulinic acid, ellagic acid, gallic acid, punicalagin, flavonoids etc. It has been reported as antioxidant, antidiabetic, antibacterial, antiviral, antifungal, anticancerous, antiulcer, antimutagenic, wound healing activities etc. The present review attempts to encompass the up to date comprehensive literature analysis on *Terminalia chebula* with respect to its phytochemistry, pharmacognostic characters and its various pharmacological activities.

Key Words: Antimutagenic, Chebulinic acid, Ellagic acid, Punicalagin, *Terminalia chebula*.

INTRODUCTION

Terminalia chebula is a moderate tree used in traditional medicines. It is belongs to the family Combretaceae. It is commonly called as Black myrobalan, Ink tree (or) Chebulic myrobalan. It is extensively used in unani, ayurveda and homeopathic medicine. *Terminalia chebula* is a popular traditional medicine not only used in India but also in other countries of Asia and Africa. This is used in traditional medicine due to the wide spectrum of pharmacological activities associated with the biologically active chemicals present in this plant. It is used for the treatment of number of diseases like cancer, paralysis, cardiovascular diseases, ulcers, leprosy, arthritis, gout, epilepsy etc. It has been reported as antioxidant (Suchalata S et al., 2009), antidiabetic (Rao N.K et al., 2006), antibacterial (Kannan P et al., 2009), antiviral (Kim TG et al., 2001), antifungal, anticancerous, antiulcer, antimutagenic, wound healing activities etc.

It is used extensively in the preparation of many Ayurvedic formulations for infectious diseases such as chronic ulcers, leucorrhoea, pyorrhoea and fungal infections of the skin. It increases the frequency of stools and has got the property of evacuating the bowel completely. It is used to prevent aging and impart longevity, immunity (Vaibhav Aher et al., 2011) and body resistance against disease. It has beneficial effect on all the tissues.

Habitat

It grows in India, Myanmar, Bangladesh, Iran, Egypt, Turkey, China etc. In India Haritaki tree is grows in deciduous forests and found in North India and South words to the Deccan table lands at 1000 to 3000 ft. In Myanmar country grow up to 5000 ft. Its consists of pericarp of mature fruit of *Terminalia chebula*, a moderate sized (or) large tree found throughout India chiefly in deciduous forests and areas of light rain fall but occasionally also in slightly moist forests up to about 1500 meter elevation throughout India, flowers appear from April – August and fruits ripen from October – January.

Terminalia chebula is also called as Haritaki, Harad, Hirada, Alalekaayi, Kadukkai, Horitoky, Hilika, Karakkaya in India, Aralu in Sri Lanka, Zhang-Qin-Ge, Hezi in China, Harra, Harro in Tibet, Myrobalane in Germany, Myrobalan in dien in France.
Macroscopic characteristics

Tree

It is a deciduous tree, younger stems glabrescent, woody.

Leaves

These are 10 – 20 cm long, sub – opposite, simple; extipulate; petiolate; laminae broadly elliptic to elliptic – oblong, rarely ovate, the bases obtuse, the margins entire, the tips acute, glabrescent.

Inflorescence

Its paniculate spikes, terminal and axillary; peduncles tomentose; bracts subulate, small, caducous.

Flowers

These are 2 mm long , 3-4 mm in diameter; bracts nearly glabrous, 1.5-2.0 mm long; calyx outside glabrous, inside densely villous, calyx-segments triangular; stamens 3-4 mm long; ovary glabrous, ovoid, 1 mm long; style glabrous, 2.5- 3.0 mm long.

Fruit

It is a drupe, glabrous, sub globose to ellipsoid, 2.5 – 5.0 cm by 1.5-2.5 cm, usually smooth or frequently 5-angulate, ridged, wrinkled, turning blackish when dry. Fruits contain astringent substances - tannic acid, Chebulinic acid (Lee HS et al., 2010), gallic acid etc. Resin and a purgative principle of the nature of anthraquinone and sennoside are also present.

Seed

One, rough, ellipsoid, 1.0-2.0 cm by 0.2 -0.7 cm and without ridges.

Microscopic characteristics

Transverse section of the fruit shows epicarp composed of a layer of epidermal cells, the outer tangential wall and upper portion of the thick radial walls. Mesocarp, 2 or 3 layers of collenchymas followed by a broad zone of parenchyma with fibres and sclereids in groups and vascular bundles, scattered; fibres, simple pitted walls; porous parenchyma; sclereids, various shapes and sizes, mostly elongated; tannins and aggregate crystals of calcium oxalate in parenchyma; starch grains simple rounded or oval in shape, measuring 2-7 µm in diameter. Endocarp consists of thick walled sclereids of various shapes and sizes, mostly elongated. Fibres, sclereids and vessels lignified. Testa, one layer of large cubical cells, followed by a zone of reticulates parenchyma and vessel; tegmen consists of collapsed parenchyma. Cotyledon folded and containing aleurone grains, oil globules and some rosette aggregate crystals.

Phytochemistry

Terminalia chebula contains the triterpenes arjun glucoside 1, arjungenin and the chebulosides 1&2. Other constituents contains tannins up to 30%, chebulic acid 3-5%, chebulinic acid 30%, tannic acid 20-40%, ellagic acid, 2,4-chebulyi–β-D-glu pyranose, gallic acid, ethyl gallate, punicalagin terflavin A , terchebin, some purgative of the nature of anthraquinone , flavonoids like luteolin, rutins, and quercetin etc.

Uses of Terminalia chebula

It is given as adjuvant herb in chronic fever. On long term use it is helpful in gaining weight in the emaciated persons and in losing weight in obese persons. When it is taken with meals it sharpens the intellect, increase strength, stimulates the senses, and expels the urine, stool and waste materials from the body. It is reduces the ill effects of fat rich, creamy and oil food. It is used for curing swellings, skin and eye diseases. It can be used as home remedy against fever, cough, asthma and urinary disease. This herb has the ability to stop bleeding and prevent a medical condition called Hemorrhage. Its powder used as toothpaste, it will make your teeth stronger and healthy. The paste of dried fruit is used for chronic ulcers, wounds and scalds.

Medicinal uses

It is good to increase the appetite, as digestive aid liver stimulant, as stomachic, as gastrointestinal prokinetic agent and mild laxative. It is stimulates...
the liver and protects it further by expelling the waste excretery products from the intestines. It is indicated in Protracted diarrhea with hematochezia and prolapse of rectum. It is a good nerve, used in nervous weakness, nervous irritability. It promotes the receiving power of the five senses. It is helpful in renal calculi, dysurea, and retention of urine and used for treating parasitic infection. It is used as a blood purifier, gargle for sore throat, ulcerated gums, and muscular rheumatism. With sugar water it is used to treat opthalmia, skin itching and edema. It is used as an anti-aging agent and it is found to improve the mental faculties. The plant also has adrenergic function and helps to recover from stress. One compound Chebulagic acid (Bharat Reddy D et al 2010) from Haritaki has shown antispasmodic action like papaverine.

Pharmacological studies

Several pharmacological investigations for different biological activities of *Terminalia chebula* in various in vivo and in vitro test models have been carried out based on the presence of chemical ingredients. A summary of the findings of some of these pharmacological studies is presented below.

<table>
<thead>
<tr>
<th>Pharmacological activity</th>
<th>Type of extract</th>
<th>Laboratory Organism/ Animal Used</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant</td>
<td>a) 95% of ethanol extract b) water, methanol & 95% of ethanol extract</td>
<td>Adult male albino rats Fermented products</td>
<td>Suchalata S et al., 2009 Chia-lian chang et al., 2010</td>
</tr>
<tr>
<td>Antibacterial</td>
<td>a) Ethanol extract b) Ether, alcoholic, water extract</td>
<td>Salmonella typhi, Staphylococcus aureus, Bacillus subtilis etc. Helicobacter pylori</td>
<td>Kanan P et al., 2009 Malekradeh F et al., 2001</td>
</tr>
<tr>
<td>Antifungal</td>
<td>a) Aqueous, alcoholic, water extract b) 70% of methanol, ethylacetate, hexane, chloroform extract</td>
<td>Aspergillus niger, Aspergillus flavus, Alternaria alternata etc. Fusarium oxysporum, Phytophthora capuci, Fusarium solani etc.</td>
<td>Dr.Saheb L Shine et al., 2011 Vivek K et al., 2010</td>
</tr>
<tr>
<td>Anticancer</td>
<td>70% of methanol</td>
<td>Human(MCF-7), mouse (S115) breast cancer cell lines etc.</td>
<td>Saleem A et al., 2002</td>
</tr>
<tr>
<td>Antiviral</td>
<td>a) Acetone extract b) Aqueous extract</td>
<td>Swine influenza A virus Hepatitis B virus</td>
<td>Hongbo Ma et al., 2010 Kim TG et al., 2001</td>
</tr>
<tr>
<td>Antiulcer</td>
<td>Methanolic extract</td>
<td>Wistar albino male rats</td>
<td>Raja D et al., 2009</td>
</tr>
<tr>
<td>Antidiabetic</td>
<td>a) Ethanol extract b) chloroform extract</td>
<td>Adult albino male rats Streptozotocin induced diabetic rats</td>
<td>Gandhipuram Periyasamy et al., 2006 Rao N.K et al., 2006</td>
</tr>
<tr>
<td>Wound healing</td>
<td>a) Hydroalcoholic extract b) 90% of ethanol extract</td>
<td>Induced diabetic rats Wistar albino rats</td>
<td>Manish Pathshing et al., 2009 Chaudhary GP 2011</td>
</tr>
<tr>
<td>Anticonvulsant</td>
<td>Ethanolic, chloroform, Petroleumether aqueous extract Rats</td>
<td>Hogade Maheswar G et al., 2010</td>
<td></td>
</tr>
<tr>
<td>Antimutagenic</td>
<td>a) Chloroform, aqueous extract b) Acetonate,aqueous chloroform extract</td>
<td>Salmonella typhimurium Salmonella typhimurium</td>
<td>Grover IS et al., 1992 Kaur S et al., 2002</td>
</tr>
<tr>
<td>Anticaries</td>
<td>Aqueous extract Streptococcus mutans</td>
<td>Jagtap AG et al., 1999</td>
<td></td>
</tr>
<tr>
<td>Cardio protective effect</td>
<td>95% of ethanol extract</td>
<td>Adult albino male rats</td>
<td>Suchalata S et al., 2005</td>
</tr>
<tr>
<td>Radiation protective effect</td>
<td>Aqueous extract</td>
<td>Rats</td>
<td>Jagteja GC et al., 2002</td>
</tr>
<tr>
<td>Cytotoxic effect</td>
<td>Acetone extract Cancer cell lines</td>
<td>Kaur S et al., 2005</td>
<td></td>
</tr>
<tr>
<td>Immunodulatory effect</td>
<td>Alcohol extract Male wistar rats</td>
<td>Vaibhav Aher et al., 2011</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

Terminalia chebula has long been used because a number of phytochemical constituents have been found to be associated with the plant extract that include mainly the different types of chebulic acid, gallic acid, ellagic acid, tannic acid, amino acids, flavonoids like luteolin, rutins and quercetin etc. These compounds found to be responsible for many of pharmacological activities. From the times immemorial, plants have been widely used as curative agents for variety of ailments. Concentrated leaves, fruits, seed extracts can be found in various herbal preparations are available in market today. It is believed that detailed information as presented in this review on its phytochemistry, various pharmacognostic and pharmacological properties of the plant and the constituents might provide incentive for proper evaluation of the use of this plant in medicine.
REFERENCES

34. Suchalatha S and Devi CS. Protective effect of *Terminalia chebula* against lysosomal enzyme alterations in isoproterenolinduced cardiac damage in rats, Experimental clinical cardiology. 2005; 10(2): 91-95.

